Este 3 de julio, China lanzó un cohete Chang Zheng 2D con 5 satélites a bordo, entre ellos cuatro de la constelación de observación terrestre Jilin-1.
Misión Jilin-1 & Xinshidai
El lanzamiento ocurrió a las 02:51 UTC desde el Centro de Lanzamiento de Satélites de Taiyuan. De los 4 satélites Jilin-1, uno pertenecía a la serie Kuanfu (wideband, o banda ancha) y los otros tres a la serie Gaofen (High Resolution, o alta resolución).
Kuanfu fue el segundo satélite lanzado de esa serie, mientras que los Gaofen son ya el cuarto grupo de la tercera generación (por ello el 03D).
Estos satélites le pertenecen a la empresa Chang Guang Satellite Technology Co. y cuentan con aplicaciones de observación terrestre. También, acompañó el satélite Xinshidai-10 de ADA Space, también de observación.
Chang Guang Satellite Technology Co. (China) Chang Guang Satellite Technology Co. (China) ADA Space (China)
Destino
Órbita Terrestre Baja heliosíncrona (~530 km × 544 km × 97.54°)
Estadísticas
2021
– 64° lanzamiento orbital – 20° lanzamiento de China – 19° lanzamiento de un cohete Chang Zheng – 5° lanzamiento de un cohete Chang Zheng 2 – 2° lanzamiento de un cohete Chang Zheng 2D
Histórico
– 376° lanzamiento de un cohete Chang Zheng – 135° lanzamiento de un cohete Chang Zheng 2 – 53° lanzamiento de un cohete Chang Zheng 2D
Luego de un retraso a T-11 segundos un día antes, SpaceX lanzó el 30 de junio a las 19:31 UTC la misión Transporter-2. Esta fue la segunda del programa de viaje compartido (rideshare) de la empresa, llevando alrededor de 88 satélites a órbita.
La misión anterior (Transporter-1) pulverizó el récord mundial de la mayor cantidad de satélites lanzados en un mismo cohete, con 143.
Esta misión lleva cerca de 88 satélites pequeños y cubesats de multitud de empresas y organizaciones de los siguientes países: Italia, Estados Unidos, Suiza, México, Bélgica, Reino Unido, Luxemburgo, Tailandia, Argentina, Finlandia, Alemania y Lituania.
Satélites destacados
A bordo de la misión Transporter-2, viajan 3 desplegadores orbitales: SHERPA-FX2 y SHERPA-LTE1 de Spaceflight, este último con propulsión propia, y ION-SCV 003, de D-Orbit.
Estos despliegan gran parte de los satélites horas después de la misión, mientras siguen proveyendo de comunicaciones y rastreo antes de separarse.
También, 4 satélites argentinos de la empresa Satellogic viajan en esta misión, los ÑuSat-19, 20, 21 y 22 de observación terrestre. Estos son parte de una constelación de hasta 90 satélites para un mapeo mundial semanal.
A bordo se encuentra D2/AtlaCom-1, un satélite proveído por NanoAvionics de Estados Unidos, que incorpora instrumentos de Dragonfly Aerospace (Sudáfrica) y SpaceJLTZ de México. Este realizará demostración en vuelo de las cargas útiles de comunicación e imágenes hiperespectrales. El objetivo secundario es evaluar el interés del mercado por los datos de imágenes hiperespectrales capturados y procesados como parte del programa.
Otro de los satélites es Painani-II, el segundo satélite demostrativo de observación terrestre para la Universidad del Ejército y Fuerza Aérea Mexicana. Este es un cubesat de 3U con una cámara de baja resolución que será utilizado por estudiantes de esta universidad, y el Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE).
Finalmente NEPTUNO, una carga no confirmada, que presuntamente se lanzará en esta misión. Este es un proyecto de la empresa española Elecnor Deimos, en el que se desarrollarán tecnologías innovadoras para realizar un demostrador que contribuya a tener una solución que afronte los principales retos de la vigilancia marítima.
Vehículos y recuperaciones
El propulsor de la misión Transporter-2 será el B1060 en su octavo vuelo, que realizó con éxito un aterrizaje de regreso a tierra en la Zona de Aterrizaje 1 de Cabo Cañaveral. Fue la primera recuperación de este estilo en todo lo que va de 2021.
Por su parte, las cofias realizaron su tercer vuelo cada una (la mitad activa, participó en las misiones Transporter-1 y Starlink-21, mientras que la pasiva lo hizo en SAOCOM-1B y Starlink-18). Su recuperación desde el agua también fue exitosa, por el barco Hos Briarwood.
1. 295 kg con satélites (128 kg tras desplegar) 2. ? 3. ? (×3) 6. 4 kg (×5) 11. 4 kg (×3) 14. 3.3 kg 15. ? (×12) 27. 335 kg con satélites (203 kg tras desplegar) 28. 35 kg + 22.5 kg 30. 20 kg 31. ? 32. ? (×4) 36. 4 kg 37. ? 38. ? 39. ? 40. ? 41. ? 42. ? 43. 2 kg 44. 1 kg 45. 50 kg 46. ~80 kg + 83 kg 48. ~41 kg (×4) 52. ? (×4) 56. 17 kg 57. ? (×2) 59. 112 kg 60. ~30 kg 61. ? (×2) 63. ? 64. ? 65. <10 kg 66. ~4 kg 67. ? 68. 4 kg (×2) 70. ? (×16) 86. ~260 kg (x3)
Cliente
1. Spaceflight Inc. (Italia) + NearSpace (Estados Unidos) 2. Lynk Global Inc. (Estados Unidos) 3. HawkEye 360 (Estados Unidos) 6. Astrocast SA (Suiza) 11. Spire Global (Estados Unidos) 14. Secretaría de la Defensa Nacional (México) 15. Swarm Technologies (Estados Unidos) 27. Spaceflight Inc. (Italia) 28. Astro Digital (Estados Unidos) 30. Aerospacelab (Bélgica) 31. InSpace (Reino Unido) 32. Kleos Space (Luxemburgo) 36. Spire Global (Estados Unidos) 37. NanoAvionics (Luxemburgo) 38. D-Orbit (Italia) 39. Real Fuerza Aérea Tailandesa 40. Endurosat (Bulgaria) 41. Elecnor Deimos (España) 42. Reaktor Space Lab (Finlandia) 43. Marshall Intech (Emiratos Árabes Unidos) 44. Orbital Space (Kuwait) 45. Umbra Lab (Estados Unidos) 46. Loft Orbital (Estados Unidos) 48. Satellogic S.A. (Argentina) 52. ICEYE (Finlandia) 56. TU Berlin (Alemania) 57. DARPA (Estados Unidos) 59. Capella Space (Estados Unidos) 60. PlanetiQ (Estados Unidos) 61. General Atomics Electromagnetic Systems (Estados Unidos) 63. Dragonfly Aerospace (Sudáfrica) y SpaceJLTZ (México) 64. Tyvak Nano-Satellite Systems Inc. (Estados Unidos) 65. Fleet Space Techonlogies (Estados Unidos) 66. NASA (Estados Unidos) 67. NASA (Estados Unidos) 68. Spire Global (Estados Unidos) 70. Swarm Technologies (Estados Unidos) 86. SpaceX (Estados Unidos)
Destino
Órbita heliosíncrona
Recuperación
Propulsor
Aterrizaje en tierra, Zona de Aterrizaje 1 Florida, Estados Unidos, Tierra
Cofias
Recuperación por ‘Hos Briarwood’ A 592 km del sitio de lanzamiento, Océano Atlántico, Tierra
Estadísticas
2021
– 62° lanzamiento orbital – 27° lanzamiento de Estados Unidos – 20° lanzamiento de un cohete Falcon – 20° lanzamiento de un cohete Falcon 9 – 19° lanzamiento de un cohete Falcon 9 reutilizado
Histórico
– 67° lanzamiento de un cohete Falcon 9 Block 5 – 64° lanzamiento de un cohete Falcon 9 recuperado – 104° lanzamiento de un cohete Falcon 9 Full Thrust – 123° lanzamiento de un cohete Falcon 9 – 131° lanzamiento de un cohete Falcon
La agencia espacial rusa, Roscosmos, lanzó este 29 de junio, a las 23:27 UTC, la cápsula de carga Progress MS-17 hacia la Estación Espacial Internacional.
El carguero, que también recibe la designación Progress 78P por la NASA, llevó alimentos, combustible y suministros para los siete residentes de la ISS:
470 kg de combustible para repostar a la estación
420 litros de agua potable
40 kg de aire y oxígeno
1509 kg de diversos equipos y materiales, incluidos equipos de recursos y mantenimiento de sistemas a bordo, embalaje para experimentos, suministros sanitarios e higiénicos, prendas de vestir y alimentos frescos.
Experimentos destacados
Se envió un conjunto de cargas a la estación como parte de la implementación del programa ruso de investigación y experimentos científicos:
Los packs «Нейролаб» (Neurolab) están destinados a realizar una serie de experimentos médicos «Pilot-T» para estudiar la influencia de los vuelos espaciales a largo plazo sobre la calidad de la actividad profesional de los cosmonautas.
Los materiales del experimento «Коррекция» (Corrección) se utilizan para desarrollar medios eficaces de prevenir cambios en el tejido óseo de los astronautas en gravedad cero.
El empaquetado de «Биориск» (Biorisk) y «Константа-2» (Constant-2) sirven como laboratorio para estudiar la influencia de los factores de los vuelos espaciales en el estado de los compuestos proteicos complejos y la supervivencia de los microorganismos.
El experimento «Пробиовит» (Probiovit) tiene como objetivo desarrollar una tecnología para la producción de productos farmacológicos con propiedades inmunizadoras en condiciones de microgravedad.
El equipo de «УФ атмосфера» (Atmósfera ultravioleta) proporciona un mapa detallado de la estructura global del resplandor nocturno de la atmósfera terrestre para el estudio de los procesos meteorológicos y el clima espacial.
Acoplamiento
La cápsula Progress se acopló con la estación el viernes 2 de julio, a las 00:59 UTC en el módulo Poisk, convirtiéndose en la primera cápsula diferente a una Soyuz en acoplarse con este módulo.
Los ingenieros de vuelo de Roscosmos, Oleg Novitskiy y Pyotr Dubrov revisaron la llegada de la cápsula, de la que no hubo necesidad de tomar el control ya que el sistema automático realizó todo por su cuenta.
La Progress permanecerá en la ISS hasta finales de octubre, cuando parta y realice una reentrada atmosférica destructiva. Mientras tanto, el próximo viaje a la estación será el 22 de julio con el esperado módulo Nauka a bordo de un cohete Proton-M.
Para más información sobre el lanzamiento, revisa nuestra ficha:
Lanzamiento espacial
Cohete
Soyuz-2.1a
Proveedor
Agencia Espacial Rusa (Roscosmos)
Lugar de lanzamiento
Plataforma 31/6, Cosmódromo de Baikonur Leninsk, Kazajistán, Tierra
Carga del lanzamiento
Nombre de misión
Progress MS-17
Tipo de misión
Logística de estación espacial
Satélites
Progress 78P
Masa
~7280 kg (total al lanzamiento) ~2439 kg (carga de esta misión)
Cliente
Agencia Espacial Rusa (Roscosmos)
Destino
Estación Espacial Internacional (ISS)
Estadísticas
2021
– 60° lanzamiento orbital – 10° lanzamiento de Rusia – 10° lanzamiento de un cohete Soyuz – 4° lanzamiento de un cohete Soyuz-2.1a – 6° vuelo hacia la Estación Espacial Internacional – 4° vuelo de carga hacia la Estación Espacial Internacional
Histórico
~ 1937° lanzamiento de un cohete R-7 (Soyuz) – 123° lanzamiento de un cohete Soyuz-2 – 54° lanzamiento de un cohete Soyuz-2A – 45° lanzamiento de un cohete Soyuz-2.1a – 241° vuelo hacia la Estación Espacial Internacional – 138° vuelo de carga hacia la Estación Espacial Internacional
La partida de la cápsula de carga Cygnus CRS-15 desde la Estación Espacial Internacional ocurrió este 29 de junio, luego de permanecer más de 4 meses en el laboratorio orbital.
La cápsula Cygnus se lanzó el 20 de febrero desde un cohete Antares, y se acopló al módulo Unity el 22 de febrero para entregar más de 3600 kg de suministros, investigaciones científicas, productos comerciales, hardware y otra carga a la ISS, durante la misión #15 bajo el programa de Servicios de Reabastecimiento Comercial (CRS).
Northrop Grumman nombró a la Cygnus «S.S. Katherine Johnson», en honor a la matemática de la NASA que rompió las barreras de género y raza, calculando la mecánica orbital para algunos de los primeros vuelos espaciales tripulados de Estados Unidos.
Post-misión
Los controladores de vuelo en tierra enviaron los comandos para que el brazo robótico Canadarm-2 de la ISS tome y separe a la Cygnus del puerto nadir del módulo Unity, cerca de las 10:00 UTC. Luego, el brazo maniobró a la cápsula a su posición y la soltó a las 16:32 UTC.
— International Space Station (@Space_Station) June 29, 2021
Después de la partida, la cápsula Cygnus desplegó cinco cubesats, incluido IT-SPINS, que se sumará a la comprensión fundamental de la ionosfera de la Tierra, y MYSat-2, que capacitará a estudiantes de posgrado a través del desarrollo y evaluación de su software. Estos despliegues ocurrieron a las 22:50 UTC del mismo 29 de junio.
Posteriormente, el 1 de julio desplegó al cubesat Gunsmoke-J 2 y dos «Prometheus» del Laboratorio Nacional de Los Alamos (Estados Unidos). Estos tienen aplicaciones demostrativas.
El mismo 1 de julio, la Cygnus realizó un encendido de motores para dejar la órbita a cerca de la 01:10 UTC, estableciendo una trayectoria que la hará reingresar destructivamente a la atmósfera terrestre. La reentrada, en donde los desechos y la basura a bordo, al igual que la cápsula en sí se quemaron en la atmósfera, ocurrió cerca de la 01:40 UTC.
Repasemos nuestro resumen semanal de noticias espaciales.
Si por algo ha se ha destacado esta semana ha sido por las 2 Caminatas Espaciales que hemos tenido en las que finalmente se ha podido instalar de manera exitosa (aunque no sin problemas en los trajes del astronauta norteamericano Shane Kimbrough) los dos paneles solares iROSA en la Estación Espacial Internacional.
También hemos tenido un lanzamiento orbital ruso de un programa que tiene casi 30 años, y un intento de lanzamiento en Irán que fue FALLIDO.
El astronauta de la NASA Shane Kimbrough y el astronauta de la ESA Thomas Pesquet realizaron la tercera actividad extravehicular (EVA) a las afueras de la Estación Espacial Internacional este viernes 25 de junio, con la finalidad de instalar un segundo panel solar nuevo. El primero se instaló durante las caminatas espaciales del miércoles 16 y domingo 20 de junio.
Actividades realizadas
Durante la caminata espacial #76, que comenzó a las 11:52 UTC, Kimbrough y Pesquet retiraron con éxito el panel desde su posición en el soporte de apoyo, la maniobraron hasta su posición, conectaron los cables eléctricos y la soltaron para extenderlo a su posición completamente desplegada.
Los trabajos, que concluyeron a las 18:37 UTC (luego de 6 hors, 45 minutos), se llevaron a cabo en el extremo izquierdo más alejado (babor) de la ISS, específicamente en el Armazón P6 de la Estructura de Armazón Integrada.
En este sitio, se instaló el primer panel en el canal de energía 2B, y este, se instaló del lado opuesto, en el canal 4B.
This time-lapse shows the second iROSA, or roll-out solar array, unrolling after installation by @astro_kimbrough and @Thom_astro during their spacewalk. The actual unraveling took just 10 minutes and concluded at 1:55 EDT.
— NASA's Johnson Space Center (@NASA_Johnson) June 25, 2021
Paneles solares
Estos dos nuevos paneles solares llegaron a la estación en el carguero Dragon de SpaceX el pasado 3 de junio. El 10 de junio, los operadores del Centro de Control de Misión del Centro Espacial Johnson de la NASA utilizaron el brazo robótico Canadarm-2 para extraer los paneles solares del maletero de la Dragon.
Los nuevos paneles solares aumentarán la generación de energía de la ISS junto a los ya existentes, que están funcionando bien, pero han comenzado a mostrar signos de degradación.
Estos paneles han funcionado más allá de su vida útil (el primer par se desplegó en diciembre del 2000).
Llamados iROSA (ISS Roll-Out Solar Array), cada panel solar genera 20 kW de energía, para un total de 120 kW en toda la estación, con los 6 instalados. Mientras tanto, los paneles antiguos seguirán funcionando debajo de los nuevos, generando 95 kW de energía en total (frente a los 160 kW, ya que estarán parcialmente cubiertos).
Estadísticas
Esta fue la caminata espacial #241 en apoyo del montaje de la ISS, la novena para Shane Kimbrough (que acumula 59 horas, 28 minutos de actividad extravehicular) y la quinta para Thomas Pesquet (que acumula 33 horas exactas).
Kimbrough se convirtió en top 7 de astronautas con más experiencia en actividades extravehiculares en toda la historia, con las siguientes estadísticas:
Anatoly Solovyev (Roscosmos) – 82 horas, 22 minutos en 16 EVAs
Michael Lopez-Alegria (NASA) – 67 horas, 40 minutos en 10 EVAs
Andrew J. Feustel (NASA) – 61 horas, 48 minutos en 9 EVAs
Bob Behnken (NASA) – 61 horas, 10 minutos en 10 EVAs
Peggy Whitson (NASA) – 60 horas, 21 minutos en 10 EVAs
Fyodor Yurchikhin (Roscosmos) – 59 horas, 28 minutos en 9 EVAs
Shane Kimbrough (NASA) – 59 horas, 28 minutos en 9 EVAs
Jerry L. Ross (NASA) – 58 horas, 32 minutos en 9 EVAs
John M. Grunsfeld (NASA) – 58 horas, 30 minutos en 8 EVAs
Christopher Cassidy (NASA) – 54 horas, 51 minutos en 10 EVAs
En total, se acumulan 1519 horas y 41 minutos de trabajo afuera de la ISS durante caminatas espaciales.
El astronauta de la NASA Shane Kimbrough y el astronauta de la ESA Thomas Pesquet realizaron este domingo 20 de junio una caminata espacial en las afueras de la Estación Espacial Internacional, para terminar el trabajo de instalación del primer panel solar iROSA que comenzaron durante la caminata espacial del miércoles 16.
Actividades realizadas
Los astronautas salieron de la esclusa Quest a las 11:42 UTC del 20 de junio. Su objetivo era trabajar en el extremo más alejado del lado izquierdo (babor) de la ISS, específicamente en el Armazón P6 de la Estructura de Armazón Integrada, para actualizar el canal de energía 2B con la instalación y despliegue de un panel solar iROSA.
Ambos astronautas desplegaron con éxito el panel solar, lo atornillaron en su lugar y conectaron los cables a la fuente de alimentación de la estación para completar el despliegue.
Además, los astronautas quitaron y guardaron el hardware en preparación para liberar el segundo iROSA de su soporte, para instalarlo durante una tercera caminata espacial, trabajando en el canal de energía 4B del mismo Armazón P6.
Finalmente, la EVA concluyó a las 18:10 UTC, luego de 6 horas, 28 minutos de trabajo.
Dos de los nuevos paneles solares llegaron a la estación en el carguero Dragon de SpaceX el pasado 3 de junio. El 10 de junio, los operadores del Centro de Control de Misión del Centro Espacial Johnson de la NASA utilizaron el brazo robótico Canadarm-2 para extraer los paneles solares del maletero de la Dragon.
Los nuevos paneles solares aumentarán la generación de energía de la ISS junto a los ya existentes, que están funcionando bien, pero han comenzado a mostrar signos de degradación, ya que han funcionado más allá de su vida útil (el primer par se desplegó en diciembre del 2000).
Estadísticas
Esta fue la caminata espacial #240 en apoyo del montaje de la ISS, la octava para Shane Kimbrough (que acumula 52 horas, 43 minutos de actividad extravehicular) y la cuarta para Thomas Pesquet (que acumula 26 horas, 15 minutos).
En total, se acumulan 1512 horas y 56 minutos de trabajo afuera de la ISS durante caminatas espaciales.
Repasemos nuestro resumen semanal de noticias espaciales.
Esta semana ha sido toda una locura de lanzamientos, hasta 5 lanzamientos orbitales hemos tenido. Pero no es todo porqué también hemos tenido un paseo espacial o actividad extravehicular (EVA) realizada por el astronauta estadounidense Shane Kimbrough y por el francés Thomas Pesquet en el cual hubo un pequeño problemilla.
Pero no es lo único que ha sucedido esta semana ya que china ha mandado una tripulación a su Estación Espacial y Rusia ha dicho que puede que mande cosmonautas a esa estación. En Boca Chica que os vamos a contar, la torre orbital sigue subiendo y de momento tenemos 7 tramos confirmados y 5 ya colocados. ¿Construirán alguno más? ¿Nos sorprenderá SpaceX de alguna manera?
El astronauta de la NASA Shane Kimbrough y el astronauta de la ESA Thomas Pesquet realizaron este miércoles 16 una caminata espacial en las afueras de la Estación Espacial Internacional, para instalar y desplegar el primero de seis nuevos paneles solares que alimenta el laboratorio orbital.
Actividades realizadas
Los astronautas salieron de la esclusa Quest a las 12:11 UTC del 16 de junio. Su objetivo era trabajar en el extremo más alejado del lado izquierdo (babor) de la ISS, específicamente en el Armazón P6 de la Estructura de Armazón Integrada, para actualizar el canal de energía 2B con la instalación y despliegue de un panel solar iROSA.
Aproximadamente tres horas después de iniciada la EVA, el traje de Kimbrough comenzó a mostrar lecturas de sensores erróneas, por lo que tuvo que reingresar a la esclusa Quest para conectar su traje espacial a un umbilical y reiniciarlo. El reinicio corrigió los problemas y la caminata pudo continuar.
Kimbrough y Pesquet retiraron con éxito el panel desde su posición en el equipo de soporte de vuelo, y lo maniobraron hasta colocarlo en su posición del canal de energía 2B.
Sin embargo, los astronautas encontraron interferencias al desplegarlo, y aunado al tiempo perdido tras el problema con el traje de Kimbrough, la EVA debió terminarse luego de 7 horas, 15 minutos de trabajo a las 19:26 UTC.
Paneles solares
Dos de los nuevos paneles solares llegaron a la estación en el carguero Dragon de SpaceX el pasado 3 de junio. El 10 de junio, los operadores del Centro de Control de Misión del Centro Espacial Johnson de la NASA utilizaron el brazo robótico Canadarm-2 para extraer los paneles solares del maletero de la Dragon.
Posteriormente, el domingo 20 de junio, Kimbrough y Pesquet continuarán la instalación del primer panel, mientras que se programará una tercera EVA para instalar el segundo panel en el canal de energía 4B del mismo Armazón P6.
Los nuevos paneles solares aumentarán la generación de energía de la ISS junto a los ya existentes, que están funcionando bien, pero han comenzado a mostrar signos de degradación, ya que han funcionado más allá de su vida útil (el primer par se desplegó en diciembre del 2000).
Estadísticas
Esta fue la caminata espacial #239 en apoyo del montaje de la ISS, la séptima para Shane Kimbrough (que acumula 46 horas, 15 minutos de actividad extravehicular) y la tercera para Thomas Pesquet (que acumula 19 horas, 47 minutos).
En total, se acumulan 1506 horas y 28 minutos de trabajo afuera de la ISS durante caminatas espaciales.
Si bien es cierto que esta semana solo hemos tenido un lanzamiento (y no ha sido de SpaceX), ha sido una semana muy entretenida en la que hemos tenido muchísimas noticias espaciales, además de un eclipse solar, algo que no se ve todos los días.
Aunque no hayamos tenido lanzamientos de SpaceX, la compañía de Elon Musk no para en Boca Chica y va avanzando a pasos agigantados con su torre orbital.
Por otro lado, en su competencia Blue Origin, ya sabemos cuanto ha pagado una persona por subirse al New Shepard en la próxima misión tripulada.
Utilizamos cookies en nuestra página web para poder ofreceros la experiencia más relevante recordando tus preferencias para futuras vistas. Haciendo click en “ACEPTAR”, nos das el consentimiento para el uso de todas las cookies brindándote la mejor experiencia de usuario posible. Leer más
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.